LTE 2021 InnoSTEMer Innovative

Science/STEM Edu Learning and Teaching Packages

Leung Kin Yi Promail Chui Man Hin Eric

This project is supported by Quality Education Fund (Project No. 2019/0640)

Teaching Package Features:

(1) Two exemplars of 3D-printed interactive teaching models/tools

(2) Inquiry-based activities might promote students' learning interest.

(3) The designs were simple, low-cost and easy to replicate in all schools.

How to address alternative conception in learning Science?

• A heavier metal ball falls faster than a lighter metal ball

• Students often observe the situation with a considerable effects due to air resistance

Teaching Strategy: Demonstration

Sample of Student's Performance in 2015 HKDSE Question 4(c)

(c) Draw a free-body diagram to show the force(s) (with labels) acting on the block as it moves up the inclined plane after the push is removed. (2 marks)

Source: Hong Kong Examinations and Assessment Authority http://www.hkeaa.edu.hk/en/hkdse/hkdse_subj.html?A2&2&20_25

Dynamic Magnetic Flux Model

How teachers benefit from practicing STEM?

Chui Man Hin Eric Leung Pui Fong

This project is supported by Quality Education Fund (Project No. 2019/0640)

Stanford d.school Design Thinking Process

Collecting feedback

- There is a single-turn circular coil with diameter 5 cm.
 The coil is placed in a uniform magnetic field 1.5 × 10⁻³ T, perpendicular to the magnetic field.
 - a) What is the magnetic flux through the coil? Show the calculation.

EMPATHIZE

- b) When the magnetic field increases from 1.5×10^{-3} T to 5×10^{-3} T,
 - i. What is the new magnetic flux through the coil?
 - ii. What is the change of the magnetic flux through the coil in (b)(i)?

Objectives

(i) To define magnetic flux $\Phi = BA \cos \vartheta$

(ii) To interpret magnetic field *B* as magnetic flux density

Using a MODEL

See things differently, unexpected inspirations

Why 3D Printing?

Easy to replicate, share and modify

16

Test 1: Among Peers

TEST

Add a coloured stick to represent the normal

Larger size of the device and colour coding

Use thicker sticks

....

Dynamic Magnetic Flux Model 睇通「磁通量」

4 PROTOTYPE

Test 2: In Schools

Enhancing TPACK

Why Design Thinking?

Systematic approach

Emphasizes innovation through iteration and learning through doing

P

0

EMPATHIZE

2 DEFINE

3

IDEATE

Δ

PROTOTYPE

5 TEST Cognitive, strategic and practical processes

Related to the development of the 21st century skills

21st century skills

Problem Solving Communication and Collaboration Skills Creativity and Innovation Skills

A journey to become a **STEM literated** teacher

Hands-on and Minds-on Teaching Packages Dissemination in Physics-related (STEM) Topics

16 Feb 2022 (Wed) PM

17 Feb 2022 (Thur) PM

